# RF-596-02 PRESELECTOR MODULE 

(A19 ASSEMBLY)


# RF-596-02 PRESELECTOR MODULE 

(A19 ASSEMBLY)

Copyright (C) 1983<br>By Harris Corporation<br>All Rights Reserved



# 8 HARRIS <br> RF COMMUNICATIONS 

## TABLE OF CONTENTS

## Paragraph

1 General Description ..... 1
2 Technical Characteristics ..... 1
3 Functional Description ..... 1
3.1 Filter Select Assembly A19A2 ..... 1
3.2 Tuning Assemblies I and II (A2A4A4, A2A4A3) ..... 3
3.3 Interconnect Schematic ..... 4
4 Maintenance ..... 4
4.1 General ..... 4
4.2 Troubleshooting Procedure ..... 5
5 Assembly A19 Alignment ..... 6
5.1 General Information ..... 6
5.2 Prealignment Performance Check ..... 6
5.3 Assembly A19 Alignment Procedure ..... 6
5.3.1 Low Band Adjustment (Initial Setup) ..... 7
5.3.2 Low Band Adjustments (Tuning) ..... 10
5.3.3 Variable Capacitor Adjustment ..... 10
5.3.4 High Band Adjustment (Initial Setup)
5.3.5 High Band Adjustment (Tuning) ..... 12
5.3.6 High Band/Low Band End Check ..... 12
5.4 Post Alignment Performance Check ..... 12
6 Parts Lists ..... 13
7 Schematic Diagrams ..... 13

## LIST OF FIGURES

Figure
Frontispiece ..... 1 ..... 2
RF-596-02 Preselector Module (A19 Assembly) Functional Block Diagram
RF-596-02 Preselector Module Option (A19 Assembly)
2
Alignment Test Setup for Assembly A19 3 ..... 8
Typical Response Curve for Cavity Filter ..... 84
High/Low Band Cavity Coil Adjustment Locations ..... 9
RF-596-02 Preselector Module Rear Panel Adjustments ..... 11
RF-596-02 Filter Assembly Module Locations ..... 19
Filter Select PWB, Component Location Diagram (10024-2210) ..... 19
Tuning Assembly I, Component Location Diagram (10024-2229 Rev. A) ..... 20
Tuning Assembly II, Component Location Diagram (10024-2339 Rev. A) ..... 20
Interface PWB, Component Location Diagram ..... 21
Filter Select PWB Schematic Diagram ..... 23
Tuning Assemblies I and II, Schematic Diagram ..... 25

## LIST OF FIGURES (Cont.

Figure Page
13 RF-596-02 Preselector Module (A19 Assembly) Interconnect Schematic Diagram ..... 27
14
RF-596-02 Preselector Module Schematic Diagram ..... 29
LIST OF TABLES
Table ..... Page
1 Filter Select Assemblies I and II Troubleshooting Aid ..... 5Filter Select PWB A2A4A2 Frequency vs. Relay Operation5
Optimum Response Curve Characteristics ..... 7
Post Alignment Test Frequencies ..... 13
Filter Select PWB Assembly Parts List ..... 14
5Tuning Assembly I Parts List15Tuning Assembly 11 Parts List16
Preselector Interface PWB Assembly Parts List17
9 List of Manufacturer's Codes ..... 18

## NOTE

This supplement describes the RF-596-02 Preselector Module, a microprocessor-controlled preselector which improves the RF-590 Receiver's performance in strong signal environments. This option consists of an RF-578 Preselector and the A1 Interface PWB 10073-6400. The A1 Interface PWB 10073-6400 is used to convert serial data from the RF-590 to parallel data for use with the RF-578 Preselector or the $1920-1200$ suboctave filter. The RF-596-02 Preselector Module is the A19 Assembly of the RF-590 Receiver.


RF-596-02 Preselector Module (A19 Assembly) Functional Block Diagram

# OHARRIS <br> <br> RF COMMUNICATIONS 

 <br> <br> RF COMMUNICATIONS}

## 1. GENERAL DESCRIPTION

The RF-596-02 Preselector Module is a microprocessor-controlled preselector which improves the RF-590 Receiver's performance in strong signal environments. This option consists of an RF-578 Preselector and the A1 Interface PWB 10073-6400. The A1 Interface PWB 10073-6400 is used to convert serial data from the RF-590 to parallel data for use with the RF-578 Preselector or the 1920-1200 suboctave filter. Serial data is constantly clocked through shift registers U1 and U2 by the clock pulses. Only a frequency change on the RF-590 front panel causes a strobe pulse to be applied at the end of a serial word to U1 and U2. This strobe pulse causes the outputs of U 1 and U 2 to change to a parallel data format. The parallel output of shift registers $U 1$ and $U 2$ is the address that is used by EPROMS $U 3$ and $U 4$ to select capacitor control lines CO through C9 of the RF-578 or bands for the one-half octave filter. Figure 1 shows the location of the A1 Interface PWB on the RF-596-02 Preselector Module.

## 2. TECHNICAL CHARACTERISTICS

Weight:

| Preselector Module | 2.6 pounds ( 1.8 kilograms) |
| :--- | :--- |
| Control PWB Assemblies | 0.5 pounds ( 0.23 kilograms) |

## Dimensions:

| Preselector Module | $5.31(\mathrm{H}) \times 5.84(\mathrm{~W}) \times 2.09(\mathrm{D})$ inches <br> $13.49(\mathrm{H}) \times 14.83(\mathrm{~W}) \times 5.31(\mathrm{D})$ centimeters |
| :--- | :--- |
| Power Requirements: | 5 Vdc <br> -15 Vdc |
| Frequency Range: | 0.1 to 30 MHz |
| Insertion Loss: | 4 to 6 dB |
| Selectivity: | 20 dB minimum at a frequency $10 \%$ from $\mathrm{f}_{\mathrm{o}}$ |
| Overload Protection: | On-channel -10 Vrms nominal <br> Off-channel -30 Vrms nominal |

## 3. FUNCTIONAL DESCRIPTION

### 3.1 Filter Select Assembly A19A2

An RF input signal from the antenna enters the Filter Select PWB at J 2 , and is fed via the normally energized contacts of relay K6, to relay K1. Relays K1 and K2 are under the control of the $<2 \mathrm{MHz}$ input from Interface PWB A19A1. If the receive frequency is less than 2 MHz , a low input would be present at E5. Q 1 is now biased on energizing K1, K2; opening the signal path to the cavity filters; and coupling the

Figure 1. RF-596-02 Preselector Module Option (A19 Assembly)

# HARRIS <br> RF COMMUNICATIONS 

RF signal via the low pass filter network C2, L3, C3, and C4, normally energized K5, to the input of Input Filter PWB A1 of the RF-590.

For a receive frequency greater than 2 MHz (as decoded by Interface PWB A19A1), Q1 is held at cut-off by R2. This keeps relays $K 1$ and $K 2$ deenergized. The $R F$ signal ( $>2 \mathrm{MHz}$ ) is now passed, via the normally closed contacts of $K 1$, to band select relay $K 3$. Relays $K 3$ and $K 4$ operate in unison, under the control of A19A1. When Interface PWB A19A1 determines the receive frequency to be within the low band limits ( 2 MHz to 7.99 MHz ), a low logic level is applied to 03 , via E1 and R10. O3, now being forward biased, energizes relays $K 3$ and $K 4$, while $C 18, L 8$, and $L 9$ serve to decouple any stray $R F$ that may be present on the supply line. Energized relays K3 and K4 couple the RF signal to a high-Q, doubly-tuned bandpass filter, whose resonant frequency is determined by the tuning of the coils within the low band cavity assembly, and the capacitors (located on Tuning Assembly I and Tuning Assembly II) switched into the circuit by control data from A19A1. The individual filter shape is determined by several factors, which include filter tuning (capacitive and inductive) and the coil-to-coil coupling within the low band cavity. With the low band circuitry properly adjusted, each filter is designed to cover a specific frequency band with a onehalf dB bandwidth of approximately $1 / 60$ of an octave. From the low band cavity filter, the RF signal reenters the Filter Select PWB at E10, via low pass filter (C20, C21, L10, L11, and R14/L2), energized relay $K 4$, normal $K 2$ contacts, and energized relay $K 5$, then is applied to the J1 RF output.

Similarly, if Interface PWB A19A1 determines the selected frequency to be 8 MHz or greater, a high logic level is applied to E1. This biases Q3 off, deenergizing relays K3 and K4. Deenergized relays K3 and K4 couple the RF signal to the high band cavity which functions in a manner similar to the low band cavity. The same groups of capacitors are used in both the high band and low band filters with any minor capacitive differences between high and low band cavities being compensated for by C21, C22 on Tuning Assembly 1 and C22, C23 on Tuning Assembly II. From the high band cavity, the RF signal reenters the Filter Select PWB at E12 via a low pass filter (C15, C16, L6, L7, and R11/L1), deenergized relays K4 and K2 and energized relay K5. The RF signal is then applied to the RF-590 A1 Input Filter (10073-5100). In addition, a low logic level is applied to the base of Q4, via E13 and R13, biasing Q4 on, which energizes relays K11 on Tuning Assemblies I and II of the RF-596-02 Preselector Module.

A high level, out-of-band input signal at J 2 is coupled by C 24 to the voltage divider network consisting of R15 and R16. This voltage, detected by CR8, is seen as a negative voltage at the base of Q5. This increases proportionally to the RF input level. At a level of 30 Vrms , the voltage developed across CR8 becomes sufficiently negative to bias 06 off, deenergizing K6 and opening the antenna input path. Voltage divider network R4, R5, and detector CR4 develop a negative voltage proportional to the in-band signal level present at C7. At an in-band signal level of 10 Vrms or greater, the negative voltage at the base of Q 2 becomes sufficient to bias Q 2 off, deenergizing relay K 5 and shorting the RF input to the receiver.

### 3.2 Tuning Assemblies I and II (A2A4A4, A2A4A3)

Tuning Assembly I (A2A4A4), and Tuning Assembly II (A2A4A3) are similar in design and function, with the exception that Tuning Assembly II contains the ten relay driver transistors (Q1 through Q10). Each PWB assembly is comprised of ten capacitor sections with their associated control relays (K1 through K10), and a high/low band select relay K11.

Refer to the Tuning Assemblies schematic diagram for the following discussion. Relay driver transistors Q1 through Q10, on Tuning Assembly II, are normally reversed biased by a 5 Vdc level supplied by Interface PWB A19A1. The Interface PWB A19A1 decodes the serial data stream from the RF-590 into a parallel word that is used to supply band information to CO through C9. Active control signals appear at the inputs of Tuning Assembly II as low logic levels, while inactive control lines are identified by the presence of the 5 Vdc on the Tuning Assembly II inputs.

For the following discussion, assume that the receiver's front panel frequency select switches are set to 2.15 MHz . The frequency and band information for 2.15 MHz contained in the RF-590 frequency code is decoded by A19A1, which in turn presents a series of low (active) control inputs to Tuning Assembly 11. In this example, all control inputs are low (active), with the exception of A3J1-2 (C8) which remains high (inactive). This low level at $\overline{\mathrm{CO}}$ through $\overline{\mathrm{C} 7}$ and $\overline{\mathrm{C} 9}$, forward biases Q 1 through $\mathrm{Q7}, \mathrm{Q9}$, and $\mathrm{Q10}$, while the high level at A3J1-2 (C8) holds 08 at cut-off. Transistors 01 through $07, Q 9$, and $Q 10$ are now forward biased and energize their respective control relays ( K 1 through K10) on Tuning Assembly II, and via A3P1 and A3P2, control relays ( K 1 through K10) on Tuning Assembly I. Energized control relays K1 through K7, K9, and K10 switch their associated capacitors into the signal path from the cavity filter, in this case, the low band cavity.

In addition, since the frequency selected ( 2.15 MHz ) is within the low band range, relays K 11 on Tuning Assemblies I and II will be deenergized, connecting the capacitor network to the low band cavity.

> The trimmer capacitors located on Tuning Assemblies I and II and adjustments on the cavity assemblies have been set for optimum response characteristics at the desired frequencies, and should not require any further adjustments under normal use. Severe degradation in receiver performance will result if attempts are made to adjust these capacitors without the use of proper test equipment (i.e., H.P. Spectrum Analyzer Model 8553B, equipped with Model 8444A Tracking Generator, or equivalent).

### 3.3 Interconnect Schematic

An interconnect schematic for the RF-596-02 Preselector Module is found at the end of this section.

## 4. MAINTENANCE

### 4.1 General

The RF-596-02 Preselector Module requires no periodic lubrication or adjustments of a mechanical nature. Under normal operation, no further adjustment to the high band cavities, low band cavities, or to the variable capacitors on the two Tuning Assemblies should be required.

# HARRIS <br> RF COMMUNICATIONS 

### 4.2 Troubleshooting Procedure

After localizing the receiver's malfunction to the RF-596-02 Preselector Module, it must be further determined which assembly within the module itself is the cause of the problem. To localize faults within the RF-596-02 Preselector, seven different frequencies can be used to test the band selection relays and the tuning capacitors as shown in tables 1 and 2.

Table 1. Filter Select Assemblies I and II Troubleshooting Aid

|  | Relays |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | A3P1-7 | A4P2-2 |
|  | Terminals |  |  |  |  |  |  |  |  |  |  |  |
| Frequency MHz | E1 | E11 | E2 | E8 | E7 | E4 | E5 | E6 | E9 | E10 | A3K11 | A4K11 |
| 2.150 | L | L | L | L | L | L | L | H | L | L | H | H |
| 2.90 | X | X | X | X | X | X | X | L | H | X | X | X |
| 7.890 | H | H | H | H | H | H | H | H | H | H | X | X |
| 8.0 | X | X | X | X | X | X | X | X | X | X | L | L |

Notes:
L = Low Logic Level/Relay Energized
$H$ = High Logic Level/Relay Deenergized
X = Don't Care
Low Level to Activate Control Functions

Table 2. Filter Select PWB A2A4A2 Frequency vs. Relay Operation

|  | Relays |  |
| :---: | :--- | :--- |
| Frequency MHz | K1, K2 | K3, K4 |
| 1.5 | Closed | Open |
| 2.0 | Open | Closed |
| 8.0 | Open | Open |

When using tables 1 and 2 , note that active control lines are indicated by low logic levels, while inactive control lines remain high (approximately 5 Vdc ). The low levels on capacitor control lines C 0 through C 9 forward bias relay driver transistors Q1 through Q10, energizing their associated control relays. For example, assume that the front panel switches are set for $2,150 \mathrm{MHz}$. Table 1 indicates that for the frequency of 2.150 MHz , all capacitor control relays on Tuning Assemblies I and II (A2A4A4 and A2A4A3, respectively) should be energized with the exception of control relay K8. In addition, all terminals (E2 through E10)
on Control Input PWB A2A4A1 should indicate a low logic level, with the exception of E6 which should read a high level (approximately 5 Vdc ). Should any control line(s) indicate other than what is shown in table 1, the fault is located before the module proper (i.e. Interface PWB A19A1). Similarly, if the status of the control lines reflect what is shown in the table, but the respective control relays remain deenergized, that fault is most likely within the module proper, (i.e., Tuning Assemblies I and II).

The frequencies in table 2 will check the following control lines; 2 MHz Control, Low Band Control, and High Band Control. The use of tables 1 and 2, together with the schematic drawings supplied, should ease fault location and repair.

## 5. ASSEMBLY A19 ALIGNMENT

### 5.1 General Information

The RF-596-02 Preselector Module, when used in conjunction with the RF-590 Receiver, will normally require no alignment. Read the following warning before attempting any alignment routine.

## WARNING

Do not attempt any Preselector Module Alignment/ Adjustment procedure until all other possible causes for degraded performance have been checked and ruled out. As an example, if appropriate relays on the Tune I and Tune II boards are not switching in pairs, it could appear to be an alignment problem. Attempting to align the unit under these conditions would be futile and would probably require returning the unit to the factory to correct. Remember, realignment should never be required unless mechanical positioning of reactive elements are accidentally (or purposely) disturbed.

### 5.2 Prealignment Performance Check

The prealignment performance check should consist of measuring the insertion loss (in dB ), the accuracy at which the "selectivity window" is centered on frequency, and ensuring that the selectivity is at least -20 dB at $\pm 10$ percent removed from the center frequency $\left(\mathrm{F}_{\mathrm{c}}\right)$. This may be accomplished by setting the receiver frequency select switches to the frequencies specified in table 3 and observing the results with a spectrum analyzer and tracking generator tuned to the appropriate frequency (figure 2).

### 5.3 Assembly A19 Alignment Procedure

This alignment procedure is not intended to become a part of a periodic maintenance routine. Any attempt to adjust this assembly without the required test equipment (or equivalent) will cause severe

# 81 HARRIS <br> RF COMMUNICATIONS 

degradation in receiver performance. The RF-596-02 Preselector Module has been factory set for optimum response characteristics over the operating frequency range, and should not require further adjustment. If after a component replacement, measured performance indicates that a realignment is required; proceed as follows:
note

Do not make the following adjustments without the use of a Hewlett-Packard Spectrum Analyzer Model HP-8553B, equipped with Model HP-8444A Tracking Generator (or equivalent). See figure 3 for alignment test setup.

Table 3. Optimum Response Curve Characteristics

| Center Frequency <br> $F_{\mathbf{c}}(\mathrm{MHz})$ | $-10 \%$ Below <br> $\mathrm{F}_{\mathbf{c}}(\mathrm{MHz})$ | $+10 \% \mathrm{Above}$ <br> $\mathrm{F}_{\mathbf{c}}(\mathrm{MHz})$ |
| :---: | :---: | :---: |
| 2.015 | 1.813 | 2.216 |
| 2.500 | 2.250 | 2.750 |
| 5.000 | 4.500 | 5.500 |
| 7.945 | 7.150 | 8.739 |
| 8.050 | 7.245 | 8.855 |
| 10.000 | 9.000 | 11.000 |
| 15.000 | 13.500 | 16.500 |
| 20.000 | 18.000 | 22.000 |
| 25.000 | 22.500 | 27.500 |
| 29.999 | 27.000 | 33.000 |

### 5.3.1 Low Band Adjustment (Initial Setup)

a. For the location of the aperture screw and link assembly mentioned in the following procedure, refer to figure 4.
b. Turn aperture screw fully counterclockwise to the rear of the cavity, then rotate five turns clockwise.
c. Turn low band link assemblies fully clockwise, then rotate two turns clockwise.
d. Set cores fully clockwise.


Figure 2. Typical Response Curve for Cavity Filter


Figure 3. Alignment Test Setup for Assembly A19


Figure 4. High/Low Band Cavity Coil Adjustment Locations
e. Set front panel frequency switches to 7.9450 MHz .

Set analyzer to 7.945 MHz , bandwidth to 300 kHz , scan width to $0.2 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division. Set A3C21 and A4C22 for a centered display on the spectrum analyzer.
g. Adjust link assemblies and aperture screw to obtain a 3 to 4 dB insertion loss. Set analyzer to $10 \mathrm{~dB} \log / \mathrm{division} .\mathrm{Check} \mathrm{the} \mathrm{points} \pm 10 \%$ of the center frequency ( 7.150 and 8.739 MHz ) for a -22 to -24 dB level consistent with the 3 to 4 dB level at the center frequency ( $\mathrm{F}_{\mathrm{c}}$ ). Adjust link assemblies as necessary.

# OHARRIS <br> RF COMMUNICATIONS 

## Low Band Adjustments (Tuning)

a. Set front panel frequency switches to 2.015 MHz .
b. Set analyzer $F_{c}$ to $2.015 \mathrm{MHz}, 2 \mathrm{~dB}$ log/division.
c. Adjust cores to center display as shown in figure 4.
d. Insertion loss should be less than 5.8 dB . Check the points at $\pm 10 \%$ of $\mathrm{F}_{\mathrm{c}}$ (1.813 and 2.216 MHz ) with the analyzer set on the $10 \mathrm{~dB} \log /$ division. They should be a -22 to -24 dB .
e. Set front panel frequency switches to 7.945 MHz .
f. Set the analyzer $F_{c}$ to $7.945 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division. Adjust A 3 C 21 and C 4 C 22 to center display on the analyzer.
g. The insertion loss should be less than 4 dB . With the analyzer set to $10 \mathrm{~dB} \log / \mathrm{division}$, check the bandwidth points $\pm 10 \%$ of $F_{c}(7.150$ and 8.739$)$ for a -22 to -24 dB level.

Variable Capacitor Adjustment

## NOTE

Use 2 dB log position on the spectrum analyzer. Precise adjustment of these trimmers is required for proper tracking of the preselector.
a. Refer to figure 5 and set the front panel frequency switches to 7.840 MHz . Set the analyzer to a $F_{c}$ of $7.840 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division, and bandwidth of 300 kHz . Adjust A3C10 and A4C10 to center and peak the response.
b. Set front panel frequency switches to 7.760 MHz , and analyzer $\mathrm{F}_{\mathrm{c}}$ at 7.760 MHz . Adjust A 3 C 1 and A 4 C 1 to center and peak response.
c. Set front panel frequency switches to 7.565 MHz , and analyzer $\mathrm{F}_{\mathrm{c}}$ to 7.565 MHz . Adjust A 3 C 2 and A 4 C 2 to center and peak display.
d. Set front panel frequency switches to 7.260 MHz , and analyzer $\mathrm{F}_{\mathrm{c}}$ to 7.260 MHz . Adjust A3C3 and A4C3 to center and peak display.
e. Repeat steps 5.3.1e through $g$ and 5.3.3a through $d$.


Figure 5. RF-596-02 Preselector Module Rear Panel Adjustments

### 5.3.4 High Band Adjustment (Initial Setup)

a. Turn aperture screw (see figure 4) fully counterclockwise to rear of cavity, then rotate two turns clockwise.
b. Turn link assemblies fully clockwise, then rotate four turns counterclockwise.
c. Set cores fully clockwise.
d. Set front panel frequency switches to 29.880 .

# \% HARRIS <br> RF COMMUNICATIONS 

e. Set analyzer $F_{c}$ to $29.880,2 \mathrm{~dB}$ log/division, and bandwidth to 1 MHz . Adjust A 3 C 22 and A4C21 to center and peak the response.
f. Adjust link assembly and aperture screw to obtain a 5 dB insertion loss.

High Band Adjustment (Tuning)
a. Set front panel frequency switches to 8.050 MHz , and analyzer $\mathrm{F}_{\mathrm{c}}$ to $8.050 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division, 300 kHz bandwidth.
b. Adjust slugs to center and peak response.
c. Set front panel frequency switches to 29.880 MHz , and analyzer $F_{c}$ to $29.880 \mathrm{MHz}, 2 \mathrm{~dB}$ log/division, 1 MHz bandwidth. Readjust A 3 C 22 and A 4 C 21 to center and peak display.
d. Set the front panel frequency swirches to 29.880 MHz . Set analyzer $F_{c}$ to $29.880 \mathrm{MHz}, 10$ $\mathrm{dB} \log /$ division, 1 MHz bandwidth. Check the points at 26.892 MHz and $32.868( \pm 10 \%$ of $F_{c}$ ) for a minimum of 20 dB loss consistent with the 5 dB insertion loss at the center frequency.

### 5.3.6 High Band/Low Band End Check

a. Set front panel frequency switches to 8.050 MHz .
b. Set the analyzer $F_{c}$ to $8.050 \mathrm{MHz}, 10 \mathrm{~dB} \mathrm{log} /$ division, 300 kHz bandwidth
c. Check the points at 7.245 MHz and $8.855 \mathrm{MHz}\left( \pm 10 \%\right.$ of $\left.F_{c}\right)$ for a minimum of 20 dB loss consistent with the insertion loss of 5.4 to 5.6 dB .

## Post Alignment Performance Check

In addition to evaluating performance data (insertion loss and selectivity at $\pm 10 \%$ of $F_{c}$ ) at the frequencies specified in the alignment procedure, spot checks should be made throughout the system frequency range to ensure proper tracking of the cavity filters. This may be accomplished by setting the receiver frequency select switches to the frequencies specified in table 4 and observing the results with a spectrum analyzer/ tracking generator tuned to the appropriate frequency.

## NOTE

A properly adjusted preselector will have the selectivity windows centered on frequency and meet published insertion loss and selectivity at $\pm 10 \%$ from the center frequency.

Table 4. Post Alignment Test Frequencies

| Center Frequency $\left(F_{\mathbf{c}}\right)$ | $-10 \%$ of $F_{\mathbf{c}}$ | $+\mathbf{1 0 \%}$ of $\mathbf{F}_{\mathbf{c}}$ |
| :---: | :---: | :---: |
| 2.500 | 2.250 | 2.750 |
| 5.000 | 4.500 | 5.500 |
| 10.000 | 9.000 | 11.000 |
| 15.000 | 13.500 | 16.500 |
| 20.000 | 18.000 | 22.000 |
| 25.000 | 22.500 | 27.500 |
| 29.999 | 27.000 | 33.000 |

## 6. PARTS LISTS

Tables 5 through 8 are comprehensive parts lists of all replaceable components for the RF-596-02 Preselector Module. When ordering parts from the factory, include a full description of the part. Manufacturers are referenced by a five digit code found in table 9. Figures 6 through 10 are component location diagrams for the RF-596-02 Preselector Module.

## 7 SCHEMATIC DIAGRAMS

Figures 11 through 14 are the RF-596-02 Preselector Module schematic diagrams.

# 8 HARRIS <br> RF COMMUNICATIONS 

Table 5. Filter Select PWB Assembly Parts List

| Ref. Desig. | Part No. | Description |
| :---: | :---: | :---: |
| A2 | 10024-2210 | Filter Select PWB Assembly |
| C1 | C11-0005-104 | Capacitor, Ceramic, 1 uF |
| C2 | CD15FA122J03 | Capacitor, Mica, 1200 pF , $\longrightarrow$ M\% |
| C3 | CMR04C750JODM | Capacitor, Mica, 75 pF |
| C4 | CD15FA122J03 | Capacitor, Mica, 1200 pF W0. |
| C5, C6 | C11-0005-104 | Capacitor, Ceramic, 10 uF |
| C7 | C320C103MIUICA | Capacitor, Ceramic, . 01 uF; mfr 31433 |
| C8 | C330C104MIUICA | Capacitor, Ceramic, . 1 uF; mfr 31433 |
| C9-C14 | C11-0005-104 | Capacitor, Ceramic, . 1 uF |
| C15 |  | Not Used |
| C16 |  | Not Used |
| C17-C19 | C11-0005-104 | Capacitor, Ceramic, . 1 uF |
| C20 | CMR04F361JODL | Capacitor, Mica, 360 pF |
| C21 | CMR04F241JODL | Capacitor, Mica, 240 pF |
| C22, C 23 | C11-0005-104 | Capacitor, Ceramic, .1 uF |
| C24 | C320C103MIUICA | Capacitor, Ceramic, . 01 uF; mfr 31433 |
| CR1-CR2 | 1N4148 | Diode, Silicon |
| CR4 | HP5082-2800 | Diode, Hot Carrier; mfr 28480 |
| CR5-CR6 | 1N4148 | Diode, Silicon |
| CR8 | HP5028-2800 | Diode, Hot Carrier; mfr 28480 |
| CR9 | 1N4148 | Diode, Silicon |
| K1-K4 | 712-5 | Relay, DPDT |
| K5, K6 | 712-12 | Relay, DPDT; mfr 11532 |
| L1 |  | Not Used |
| L2 |  | See R14 |
| L3 | MS 18130-14 | Inductor, Fixed, 3.3 uH |
| L4, L5 | MS181130-8 | Inductor, Fixed, 1.0 uH |
| L6 |  | Not Used |
| L7 |  | Not Used |
| L8, L9 | MS181130-8 | Inductor, Fixed, 1.0 uH |
| L10 | MS75083-11 | Inductor, Fixed, . 68 uH |
| L11 | MS18130-9 | Inductor, Fixed, 1.2 uH |
| L12, L13 | MS181130-8 | Inductor, Fixed, 1.0 uH |
| Q1 | 2N2907 | Transistor, PNP |
| 02 | 2N2222A | Transistor, NPN |
| Q3-Q4 | 2N2907 | Transistor, PNP |
| 05 | 2N2222A | Transistor, NPN |
| R1 | RCR07G270J | Resistor, Fixed, Composition, 27 ohms, 1/4 W, 5\% |
| R2 | RCR07G103J | Resistor, Fixed, Composition, 10K ohms, 1/4 W, 5\% |
| R3 | RCR07G102J | Resistor, Fixed, Composition, 1000 ohms, 1/4 W, 5\% |
| R4, R5 | 100NS2700-5 | Resistor, 2,700 ohms, 1 W, 5\%, mfr 00213 |
| R6 | RCR07G162J | Resistor, Fixed, Composition, 1.6K ohms, 1/4 W, 5\% |
| R7 | RCR07G822J | Resistor, Fixed, Composition, 8200 ohms, 1/4 W, 5\% |

RF COMMUNICATIONS

Table 5. Filter Select PWB Assembly Parts List (Cont.)

| Ref. Desig. | Part No. | Description |
| :--- | :--- | :--- |
| R8 | RCR07G123J | Resistor, Fixed, Composition, 12K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R9 | RCR07G103J | Resistor, Fixed, Composition, 10K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R10 | RCR07G102J | Resistor, Fixed, Composition, 1000 ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R11 |  | Not Used |
| R12 | RCR07G103J | Resistor, Fixed, Composition, 10K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R13 | RCR07G102J | Resistor, Fixed, Composition, 1000 ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R14/L2 | 6905-0610 | Resistor/Inductor, Fixed |
| R15, R16 | 100NS2700-5 | Resistor, High Power, 2700 ohms, $1 \mathrm{~W}, 5 \% ; \mathrm{mfr} 00213$ |
| R17 | RCR07G183J | Resistor, Fixed, Composition, 18K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R18 | RCR07G123J | Resistor, Fixed, Composition, 12K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R19 | RCR07G822J | Resistor, Fixed, Composition, 8200 ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R20 | RCR07G273J | Resistor, Fixed, Composition, 27K ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| R21, R22 | RCR07G750J | Resistor, Fixed, Composition, 75 ohms, $1 / 4 \mathrm{~W}, 5 \%$ |
| VR1, VR2 | 1N5242B | Diode, Zener.12 V, 5\% |
| JMP1, 2 | MP-1142 | Jumper molded |

Table 6. Tuning Assembly I Parts List

| Ref. Desig. | Part No. | Description |
| :---: | :---: | :---: |
| A4 | 10024-2220 | Tuning I PWB Assembly |
| C1 | 5801 | Capacitor, Variable, . 3 to 3.5 pF; mfr 91293 |
| C2, C3 | 5201 | Capacitor, Variable, . 8 to 10 pF ; mfr 91293 |
| C4 | 6905-0606-1 | Capacitor, Mica, 15 pF |
| C5 | 6905-0606-2 | Capacitor, Mica, 30 pF |
| C6 | 6905-0606-3 | Capacitor, Mica, 56 pF |
| C7 | 6905-0606-4 | Capacitor, Mica, 110 pF |
| C8, C9 | 6905-0606-5 | Capacitor, Mica, 220 pF |
| C10 | 5801 | Capacitor, Variable, 3 to 3.5 pF; mfr 91293 |
| C11-C20 | C11-0005-104 | Capacitor, Ceramic, . 1 uF |
| C21, C22 | 5201 | Capacitor, Variable, 8 to 10 pF ; mfr 91293 |
| C23 | C11-0005-104 | Capacitor, Ceramic, . 1 uF |
| CR1 to CR11 | 1N3064 | Diode, Silicon |
| K1 to K10 | 6905-0607 | Reed, Relay |
| K11 | 6905-0608 | Relay, DPDT |
| P1, P2 | 1100-1-107-02 | Connector; mfr 26742 |

Table 7. Tuning Assembly II Parts List

| Ref. Desig. | Part No. | Description |
| :---: | :---: | :---: |
| A3 | 10024-2230 | Tuning II PWB Assembly |
| C1 | 5801 | Capacitor, Variable, . 3 to 3.5 pF; mfr 91293 |
| C2, C3 | 5201 | Capacitor, Variable, 8 to 10 pF ; mfr 91293 |
| C4 | 6905-0606-1 | Capacitor, Mica, 15 pF |
| C5 | 6905-0606-2 | Capacitor, Mica, 30 pF |
| C6 | 6905-0606-3 | Capacitor, Mica, 56 pF |
| C7 | 6905-0606-4 | Capacitor, Mica, 110 pF |
| C8, C9 | 6905-0606-5 | Capacitor, Mica, 220 pF |
| C10 | 5801 | Capacitor, Variable, . 3 to 3.5 pF; mfr 91293 |
| C11-C20 | C11-0005-104 | Capacitor, Ceramic, . 1 uF |
| C21, 222 | 5201 | Capacitor, Variable, 8 to 10 pF ; mfr 91293 |
| C23 | C11-0005-104 | Capacitor, Ceramic, .1 uF |
| CR1-CR11 | 1 N 3064 | Diode, Silicon |
| J1, J2 | 1300-007 | Connector; mfr 26742 |
| K1-K10 | 6905-0607 | Reed, Relay |
| K11 | 6905-0608 | Relay, DPDT |
| P1, P2 | 1100-1-107-02 | Connector; mfr 26742 |
| Q1-Q10 | MPS-6562 | Transistor, PNP; mfr 04713 |
| R1 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R2 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R3 | RCR05G 103J | Resistor, Fixed Composition, 10K ohms, 1/8 W, 5\% |
| R4 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, $1 / 8 \mathrm{~W}, 5 \%$ |
| R5 | RCR05G103J | Resistor, Fixed, Composition, 10 K ohms, $1 / 8 \mathrm{~W}, 5 \%$ |
| R6 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R7 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R8 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R9 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R10 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R11 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R12 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R13 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R14 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R15 | RCR05G 103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R16 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R17 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
| R18, R19 | RCR05G392J | Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\% |
| R20 | RCR05G103J | Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\% |
|  |  |  |

Table 8. Preselector Interface PWB Assembly Parts List

| Ref. Desig. | Part No. | Description |  |
| :---: | :---: | :---: | :---: |
| A19 | 10073-6400 | Preselector Interface PWB Assembly |  |
| C1 | CK06BX104M | Capacitor, Ceramic, 0.1 uF, 50 V |  |
| C2 |  | Not Used |  |
| C3-C6 | CK06BX104M | Capacitor, Ceramic, 0.1 uF, 50 V |  |
| C7 | C26-0025-100 | Capacitor, Tantalum, 10 uF, 25 V |  |
| C8-C21 | CK06BX104M | Capacitor, Ceramic, 0.1 uF, 50 V |  |
| C22 | C26-0025-339 | Capacitor, Tantalum, 3.3 uF, 25 V |  |
| CR1-CR5 | 1N4454 | Diode |  |
| J1 | J46-0032-010 | Header, 10 Pin |  |
| J2 | J46-0032-006 | Header, 6 Pin |  |
| J3 | J70-0007-010 | Card Connector, 20 Pin |  |
| J4 | J46-0032-005 | Header, 5 Pin |  |
| JMP1 | MP-1142 | Molded Jumper |  |
| L1-L12 | L-0652 | Inductor, Fixed, 1 uH |  |
| L13 | 10073-7029 | Inductor, Toroid |  |
| L14 | L-0652 | Inductor, Fixed, 1 uH |  |
| R1 | R65-0003-103 | Resistor, Film, 1/4 W, 10K $\mathrm{K}^{\text {¢ }}$ |  |
| R2 | R65-0003-153 | Resistor, Film, 1/4 W, 15K |  |
| R3, R4 | R65-0003-103 | Resistor, Film, 1/4 W, 10K |  |
| R5 | R65-0003-153 | Resistor, Film, 1/4 W, 15K |  |
| R6, R7 | R65-0003-103 | Resistor, Film, 1/4 W, 10K |  |
| R8 | R65-0003-153 | Resistor, Film, 1/4 W, 15K |  |
| R9, R10 | R65-0003-103 | Resistor, Film, 1/4 W, 10K |  |
| R11, R12 | R50-0010-103 | Resistor, SIP, 10K |  |
| U1, U2 | 101-0000-156 | CD4094 |  |
| U3, U4 | 10073-8006-701 | PROM |  |
| U5 | 130-0003-000 | LM324 |  |
| U6, U7 | 105-0000-005 | SN74LS05 |  |
| VR1 | 111-0001-001 | Regulator 5 V |  |

Table 9. List of Manufacturer's Codes

| Mfr. Code | Name \& Address | Mfr. Code | Name \& Address |
| :---: | :---: | :---: | :---: |
| 00213 | Nytronics Components Group Inc. Orange Street <br> Darlington, SC 29532 | 26742 | Methode Electronics Inc. 7447 W. Wilson Avenue Chicago, IL 60656 |
| 01295 | Texas Instruments Inc. Semiconductor Group P.O. Box 5012 13500 N. Central Expressway | 27014 | National Semiconductor 2900 Semiconductor Drive Santa Clara, CA 95051 |
| 04713 | Dallas, TX 75222 <br> Motorola Inc. | 28480 | Hewlett-Packard Company 1501 Page Mill Road Palo Alto, CA 94304 |
|  | Semiconductor Division 5005 E. McDowell Road Phoenix, AZ 85036 | 31433 | Union Carbide Corporation Components Division Greenville, SC 29606 |
| 077263 | Fairchild Semiconductor Div. 464 Ellis Street Mountain View, CA 94042 | 53387 | 3M Company <br> Electronic Products Division 3M Center |
| 11532 | Teledyne Relays 3155 W. EL Segundo Blvd. |  | St. Paul, MN 55101 |
|  | Hawthorne, CA 90250 | 91293 | Johason Manufacturing Company Box 329 |
| 13848 | E.F. Johnson Company Comco/Communications Div. Coral Way Suite 106 Miami, FL 33155 |  | Boonton, NJ 07005 |
| 18342 | Amp Inc. Syscom Division 3711 Paxton Street Harrisburg, PA 17101 |  |  |
| 21921 | RCA Corporation Distributor and Special Products Clements Bridge Road P.O. Box 100 Deptford, NJ 08096 |  |  |



Figure 6. RF-596-02 Filter Assembly Module Locations


Figure 7. Filter Select PWB, Component Location Diagram (10024-2210)


Figure 8. Tuning Assembly I, Component Location Diagram (10024-2229 Rev. A)


Figure 9. Tuning Assembly II, Component Location Diagram (10024-2339 Rev. A)

NOTES 1 . COMPLETED ASSY SHALL BE IN ACCOROANCE WITH QC- 3000.
2. MOUNT CONNECTOR J3 ON FARSIDE
3. C2I MOUNTS ON FARSIDE OF BOARD
BETWEEN ITEM IO AT E2 AND ITEM 9. SEE DETAIL "A".
4. REMOVE PIN 5 OF JI, PIN 3 OF J2 AND
PIN 3 OF J4 FOR KEYING PURPOSES


Figure 10. Interface PWB, Component Location Diagram


Figure 11. Filter Select PWB Schematic Diagram


## 




Figure 12. Tuning Assemblies I and II,



NOTE : UNLESS OTHERWISE SPECIFIED:

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN FOR A COMPLETE DESIGNATION. PREFIX WITH
2. ALL RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 55 \%$
3. ALL CAPACITOR VALUES ARE 0.1 MICROFARAD.
4. ALL inductor values are 1000 microhenrys
5. STRAP 日ETWEEN E3 AND E4 I JMPII FOR $1 / 2$ OCT. FILTER.
STRAP E5 TO E6 FOR RF-S78.
6. VENDOR PART NO. CALLOUTS ARE FOR REFERENCE ONLY.
COMPONENTS ARE SUPPLIED PER PART NO. IN PARTS LIST
7. CRI IS TO BE GROUNDED TO AN EXTERNAL. CHASSIS THROUGH A
TERMINAL LUG OFF THE PWB AS SHOWN.



